Cosmic Inflation at the Crossroads

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
The capability of Cosmic Inflation to explain the latest Cosmic Microwave Background and Baryonic Acoustic Oscillation data is assessed by performing Bayesian model comparison within the landscape of nearly three-hundred models of single-field slow-roll inflation. We present the first Bayesian data analysis based on the third-order slow-roll primordial power spectra. In particular, the fourth Hubble-flow function ϵ_4 remains unbounded while the third function verifies, at two-sigma, ϵ_3∈[-0.4,0.5], which is perfectly compatible with the slow-roll predictions for the running of the spectral index. We also observe some residual excess of B-modes within the BICEP/Keck data favoring, at a non-statistically significant level, non-vanishing primordial tensor modes: log(ϵ_1) > -3.9, at 68% confidence level. Then, for 283 models of single-field inflation, we compute the Bayesian evidence, the Bayesian dimensionality and the marginalized posteriors of all the models' parameters, including the ones associated with the reheating era. The average information gain on the reheating parameter R_reh reaches 1.3 ± 0.18 bits, which is more than a factor two improvement compared to the first Planck data release. As such, inflationary model predictions cannot meet data accuracy without specifying, or marginalizing over, the reheating kinematics. We also find that more than 40% of the scenarios are now strongly disfavored, which shows that the constraining power of cosmological data is winning against the increase of the number of proposed models. In addition, about 20% of all models have evidences within the most probable region and are all favored according to the Jeffreys' scale of Bayesian evidences.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要