7T MP2RAGE for cortical myelin segmentation: Impact of aging

PLOS ONE(2024)

Cited 0|Views0
No score
Abstract
Background Myelin and iron are major contributors to the cortical MR signal. The aim of this study was to investigate 1. Can MP2RAGE-derived contrasts at 7T in combination with k-means clustering be used to distinguish between heavily and sparsely myelinated layers in cortical gray matter (GM)? 2. Does this approach provide meaningful biological information? Methods The following contrasts were generated from the 7T MP2RAGE images from 45 healthy controls (age: 19–75, f/m = 23/22) from the ATAG data repository: 1. T1 weighted image (UNI). 2. T1 relaxation image (T1map). 3. INVC/T1map ratio (RATIO). K-means clustering identified 6 clusters/tissue maps (csf, csf/gm-transition, wm, wm/gm transition, heavily myelinated cortical GM (dGM), sparsely myelinated cortical GM (sGM)). These tissue maps were then processed with SPM/DARTEL (volume-based analyses) and Freesurfer (surface-based analyses) and dGM and sGM volume/thickness of young adults (n = 27, 19–27 years) compared to those of older adults (n = 18, 42–75 years) at p<0.001 uncorrected. Results The resulting maps showed good agreement with histological maps in the literature. Volume- and surface analyses found age-related dGM loss/thinning in the mid-posterior cingulate and parahippocampal/entorhinal gyrus and age-related sGM losses in lateral, mesial and orbitofrontal frontal, insular cortex and superior temporal gyrus. Conclusion The MP2RAGE derived UNI, T1map and RATIO contrasts can be used to identify dGM and sGM. Considering the close relationship between cortical myelo- and cytoarchitecture, the findings reported here indicate that this new technique might provide new insights into the nature of cortical GM loss in physiological and pathological conditions.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined