Investigating the Lid Effect in the Generation of Ocean Island Basalts

crossref(2024)

引用 0|浏览1
暂无评分
摘要
Ocean Island Basalts (OIBs) are generated by mantle plumes, with their geochemistry controlled by a combination of source composition, temperature, and thickness of overlying lithosphere. For example, OIBs erupting onto thicker, older oceanic lithosphere are expected to exhibit signatures indicative of higher average melting pressures. Here, we quantitatively investigate this relationship using a global dataset of Neogene and younger OIB compositions. Local lithospheric thicknesses are estimated using theoretical plate-cooling models and Bayes factors are applied to identify trends. Our findings provide compelling evidence for a correlation between OIB geochemistry and lithospheric thickness, with some variables SiO, AlO, FeO, Lu, Yb and λ) showing linear trends that can be attributed to increasing average melting pressure, whereas others (λ and λ, CaO) require a bi-linear fit with a change in gradient at ~55 km. Observed variations in highly incompatible elements are consistent with melt fractions that decrease with increasing lithospheric thickness, as expected. Nevertheless, at thicknesses beyond ~55 km, the implied melt fraction does not decrease as rapidly as suggested by theoretical expectations. This observation is robust across different lithospheric thickness estimates, including those derived from seismic constraints. We interpret this result as weak plumes failing to effectively thin overlying lithosphere and/or producing insufficient melt to erupt at the surface, in combination with a ‘memory effect’ of incomplete homogenisation of melts during their ascent. This view is supported by independent estimates of plume buoyancy flux, indicating that OIB magmatism on older lithosphere may be biased towards hotter plumes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要