Highly radiation-stable DLC coatings for a new class of detectors: structural and morphological features

Vacuum(2024)

引用 0|浏览2
暂无评分
摘要
Within the framework of the FTM-NEXT INFN (Fast Time Micropattern gaseous detectors - next of Nuclear Physics National Institute) experiment, we produced hydrogen-free diamond-like carbon films through pulsed-laser deposition to serve as resistive layers in modern resistive micro-pattern gaseous detectors that must work in extreme radiation environments at future colliders. To obtain homogeneous diamond-like carbon coatings, over medium-to-large size (3 cm x 3 cm), with excellent adhesion to the substrate and with typical surface resistivity values in the range of 1-100 MOhm/sq, growth conditions had to be optimized. In this paper we report on the stability of resistive diamond-like carbon layers subjected to increasing doses of irradiation with proton beams accelerated to an energy of 2 MeV. The morphological, structural, and electrical properties, also at the nanoscale level, of diamond-like carbon coatings following ion irradiation were studied by electron microscopy, electron diffraction, electrical transport characterization and scanning tunneling spectroscopy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要