Regulating Oxygen Vacancy Defects in Heterogeneous NiO-CeO2−δ Hollow Multi-shelled Structure for Boosting Oxygen Evolution Reaction

Huan Wang, Guannan Gong,Guohua Sun,Jian Qi,Ranbo Yu,Dan Wang

Chemical Research in Chinese Universities(2024)

引用 0|浏览4
暂无评分
摘要
CeO2 with excellent oxygen storage-exchange capacity and NiO with excellent surface activity were used to construct a heterogeneous NiO-CeO2−δ hollow multi-shelled structure (HoMS) by spray drying. It turned out that as the proportion of CeO2 increases, the overpotential and Tafel slope of NiO-CeO2−δ HoMSs first decreased and then increased. This is mainly because the construction of the NiO-CeO2−δ HoMSs not only increases the specific surface area, but also introduces oxygen vacancy defects, thus improving the interface charge transfer capability of the materials and further improving the oxygen evolution reaction (OER) performance. However, the increase of the calcination temperature will induce the decay of the OER performance of NiO-CeO2−δ HoMSs, which is mainly due to the decrease of the specific surface area, the reduction of oxygen vacancy defects, and the weakening of interface charge transfer capability. Furthermore, a series of heterogeneous composite HoMSs, such as Ni/Co, Mo/Ni, Al/Ni and Fe/Ni oxides was successfully constructed by spray drying, which enriched the diversity of HoMSs.
更多
查看译文
关键词
Heterogeneous composite structure,Hollow multi-shelled structure,Oxygen vacancy defect,Oxygen evolution reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要