Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium-sulfur reactions

NATURE COMMUNICATIONS(2024)

引用 0|浏览0
暂无评分
摘要
Engineering atom-scale sites are crucial to the mitigation of polysulfide shuttle, promotion of sulfur redox, and regulation of lithium deposition in lithium-sulfur batteries. Herein, a homonuclear copper dual-atom catalyst with a proximal distance of 3.5 angstrom is developed for lithium-sulfur batteries, wherein two adjacent copper atoms are linked by a pair of symmetrical chlorine bridge bonds. Benefiting from the proximal copper atoms and their unique coordination, the copper dual-atom catalyst with the increased active interface concentration synchronously guide the evolutions of sulfur and lithium species. Such a delicate design breaks through the activity limitation of mononuclear metal center and represents a catalyst concept for lithium-sulfur battery realm. Therefore, a remarkable areal capacity of 7.8 mA h cm-2 is achieved under the scenario of sulfur content of 60 wt.%, mass loading of 7.7 mg cm-2 and electrolyte dosage of 4.8 mu L mg-1. Here, the authors report a homonuclear cooper dual-atom electrocatalyst with high activity designed for synchronously boosting the sulfur and lithium evolutions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要