Biophysical Profiling of Red Blood Cells from Thin-film Blood Smears using Deep Learning

crossref(2024)

引用 0|浏览0
暂无评分
摘要
Microscopic inspection of thin-film blood smears is widely used to identify red blood cell (RBC) pathologies, including malaria parasitism and hemoglobinopathies, such as sickle cell disease and thalassemia. Emerging research indicates that non-pathologic changes in RBCs can also be detected in images, such as deformability and morphological changes resulting from the storage lesion. In transfusion medicine, cell deformability is a potential biomarker for the quality of donated RBCs. However, a major impediment to the clinical translation of this biomarker is the difficulty associated with performing this measurement. To address this challenge, we developed an approach for biophysical profiling of RBCs based on cell images in thin-film blood smears. We hypothesize that subtle cellular changes are evident in blood smear images, but this information is currently undetectable by human cognition. To test this hypothesis, we developed a deep learning strategy to analyze Giemsa-stained blood smears to assess the subtle morphologies indicative of RBC deformability and storage-based degradation. Specifically, we prepared thin-film blood smears from 27 RBC samples (9 donors evaluated at 3 storage timepoints) and imaged them using high-resolution microscopy. Using this dataset, we trained a convolutional neural network to evaluate image-based morphological features related to cell deformability. The prediction of donor deformability is strongly correlated to the microfluidic scores and can be used to categorize images into specific deformability groups with high accuracy. We also used this model to evaluates differences in RBC morphology resulting from cold storage. Together, our results demonstrate that deep learning models can exceed the limits of human cognition to detect subtle cellular differences in morphology resulting from deformability and cold storage. This result suggests the potential to assess donor blood quality from thin-film blood smears, which can be acquired ubiquitously in clinical workflows.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要