Chrome Extension
WeChat Mini Program
Use on ChatGLM

Ultra-wideband terahertz fingerprint enhancement sensing and inversion model supported by single-pixel reconfigurable graphene metasurface

PhotoniX(2024)

Cited 0|Views10
No score
Abstract
The molecular fingerprint sensing technology based on metasurface has unique attraction in the biomedical field. However, in the terahertz (THz) band, existing metasurface designs based on multi-pixel or angle multiplexing usually require more analyte amount or possess a narrower tuning bandwidth. Here, we propose a novel single-pixel graphene metasurface. Based on the synchronous voltage tuning, this metasurface enables ultra-wideband ( ∼ 1.5 THz) fingerprint enhancement sensing of trace analytes, including chiral optical isomers, with a limit of detection (LoD) ≤ 0.64 μg/mm2. The enhancement of the fingerprint signal ( ∼ 17.4 dB) originates from the electromagnetically induced transparency (EIT) effect excited by the metasurface, and the ideal overlap between the light field constrained by single-layer graphene (SLG) and ultra-thin analyte. Meanwhile, due to the unique nonlinear enhancement mechanism in graphene tuning, the absorption envelope distortion is inevitable. To solve this problem, a universal fingerprint spectrum inversion model is developed for the first time, and the restoration of standard fingerprints reaches Rmax2 ≥ 0.99. In addition, the asynchronous voltage tuning of the metasurface provides an opportunity for realizing the dynamic reconfiguration of EIT resonance and the slow light modulation in the broadband range. This work builds a bridge for ultra-wideband THz fingerprint sensing of trace analytes, and has potential applications in active spatial light modulators, slow light devices and dynamic imaging equipments.
More
Translated text
Key words
Graphene metasurface,Chiral molecules,Terahertz fingerprint,Electromagnetically induced transparency,Spectrum inversion model
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined