Reconstruction of 3D knee MRI using deep learning and compressed sensing: a validation study on healthy volunteers

European Radiology Experimental(2024)

引用 0|浏览0
暂无评分
摘要
To investigate the potential of combining compressed sensing (CS) and artificial intelligence (AI), in particular deep learning (DL), for accelerating three-dimensional (3D) magnetic resonance imaging (MRI) sequences of the knee. Twenty healthy volunteers were examined using a 3-T scanner with a fat-saturated 3D proton density sequence with four different acceleration levels (10, 13, 15, and 17). All sequences were accelerated with CS and reconstructed using the conventional and a new DL-based algorithm (CS-AI). Subjective image quality was evaluated by two blinded readers using seven criteria on a 5-point-Likert-scale (overall impression, artifacts, delineation of the anterior cruciate ligament, posterior cruciate ligament, menisci, cartilage, and bone). Using mixed models, all CS-AI sequences were compared to the clinical standard (sense sequence with an acceleration factor of 2) and CS sequences with the same acceleration factor. 3D sequences reconstructed with CS-AI achieved significantly better values for subjective image quality compared to sequences reconstructed with CS with the same acceleration factor (p ≤ 0.001). The images reconstructed with CS-AI showed that tenfold acceleration may be feasible without significant loss of quality when compared to the reference sequence (p ≥ 0.999). For 3-T 3D-MRI of the knee, a DL-based algorithm allowed for additional acceleration of acquisition times compared to the conventional approach. This study, however, is limited by its small sample size and inclusion of only healthy volunteers, indicating the need for further research with a more diverse and larger sample. DRKS00024156. Using a DL-based algorithm, 54
更多
查看译文
关键词
Artifacts,Artificial intelligence,Deep learning,Knee joint,Magnetic resonance imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要