Rapid Estimation Model for Wake Disturbances in Offshore Floating Wind Turbines

JOURNAL OF MARINE SCIENCE AND ENGINEERING(2024)

Cited 0|Views3
No score
Abstract
The precise wake model is crucial for accurately estimating wind farm loads and power, playing a key role in wake control within wind farms. This study proposes a segmented dual-Gaussian wake model, which is built upon existing dual-Gaussian wake models but places greater emphasis on the influence of initial wake generation and evolution processes on the wind speed profile in the near-wake region. The enhanced model optimizes the wake speed profile in the near-wake region and improves the accuracy of wake diffusion throughout the entire flow field. Furthermore, the optimized dual-Gaussian wake model is utilized to estimate the power output and blade root vibration loads in offshore wind farms. Through comparative analysis of high-fidelity simulation results and actual measurement data, the accuracy of the optimized dual-Gaussian wake model is validated. This approach offers high computational efficiency and provides valuable insights for load fluctuations and power estimation, thereby advancing the development of wake control strategies rapidly.
More
Translated text
Key words
double-Gaussian wake model,blade root flap-wise loads,wake disturbances
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined