Nitrogen addition changed soil fungal community structure and increased the biomass of functional fungi in Korean pine plantations in temperate northeast China

Science of The Total Environment(2024)

引用 0|浏览2
暂无评分
摘要
Nitrogen (N) deposition is a global environmental issue that can have significant impacts on the community structure and function in ecosystems. Fungi play a key role in soil biogeochemical cycles and their community structures are tightly linked to the health and productivity of forest ecosystems. Based on high-throughput sequencing and ergosterol extraction, we examined the changes in community structure, composition, and biomass of soil ectomycorrhizal (ECM) and saprophytic (SAP) fungi in 0–10 cm soil layer after 8 years of continuous N addition and their driving factors in a temperate Korean pine plantation in northeast China. Our results showed that N addition increased fungal community richness, with the highest richness and Chao1 index under the low N treatment (LN: 20 kg N ha−1 yr−1). Based on the FUN Guild database, we found that the relative abundance of ECM and SAP fungi increased first and then decreased with increasing N deposition concentration. The molecular ecological network analysis showed that the interaction between ECM and SAP fungi was enhanced by N addition, and the interaction was mainly positive in the ECM fungal network. N addition increased fungal biomass, and the total fungal biomass (TFB) was the highest under the MN treatment (6.05 ± 0.3 mg g−1).Overall, we concluded that N addition changed soil biochemical parameters, increased fungal activity, and enhanced functional fungal interactions in the Korean pine plantation over an 8-year simulated N addition. We need to consider the effects of complex soil conditions on soil fungi and emphasize the importance of regulating soil fungal community structure and biomass for managing forest ecosystems. These findings could deepen our understanding of the effects of increased N deposition on soil fungi in temperate forests in northern China, which can provide the theoretical basis for reducing the effects of increased N deposition on forest soil.
更多
查看译文
关键词
Nitrogen deposition,Nitrogen addition,Korean pine plantation,Fungal community structure,Ectomycorrhizal (ECM) fungi,Saprophytic (SAP) fungi
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要