Diverse material properties and morphology of moth proboscises relates to the feeding habits of some macromoth and other lepidopteran lineages

Elaine M. Bast, Natalie T. Marshall, Kendall O. Myers, Lucas W. Marsh, Martin Walschburger Hurtado,Peter A. Van Zandt,Matthew S. Lehnert

INTERFACE FOCUS(2024)

引用 0|浏览0
暂无评分
摘要
Insects have evolved unique structures that host a diversity of material and mechanical properties, and the mouthparts (proboscis) of butterflies and moths (Lepidoptera) are no exception. Here, we examined proboscis morphology and material properties from several previously unstudied moth lineages to determine if they relate to flower visiting and non-flower visiting feeding habits. Scanning electron microscopy and three-dimensional imaging were used to study proboscis morphology and assess surface roughness patterns on the galeal surface, respectively. Confocal laser scanning microscopy was used to study patterns of cuticular autofluorescence, which was quantified with colour analysis software. We found that moth proboscises display similar autofluorescent signals and morphological patterns in relation to feeding habits to those previously described for flower and non-flower visiting butterflies. The distal region of proboscises of non-flower visitors is brush-like for augmented capillarity and exhibited blue autofluorescence, indicating the possible presence of resilin and increased flexibility. Flower visitors have smoother proboscises and show red autofluorescence, an indicator of high sclerotization, which is adaptive for floral tube entry. We propose the lepidopteran proboscis as a model structure for understanding how insects have evolved a suite of morphological and material adaptations to overcome the challenges of acquiring fluids from diverse sources.
更多
查看译文
关键词
Lepidoptera,proboscis,mouthparts,taxonomic bias,morphology,feeding habits
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要