Efficiency of dynamos from autonomous generation of chiral asymmetry

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
At high energies, the dynamics of a plasma with charged fermions can be described in terms of chiral magnetohydrodynamics. Using direct numerical simulations, we demonstrate that chiral magnetic waves (CMWs) can produce a chiral asymmetry μ_5 = μ_L - μ_R from a spatially fluctuating (inhomogeneous) chemical potential μ = μ_L + μ_R, where μ_L and μ_R are the chemical potentials of left- and right-handed electrically charged fermions, respectively. If the frequency of the CMW is less than or comparable to the characteristic growth rate of the chiral dynamo instability, the magnetic field can be amplified on small spatial scales. The growth rate of this small-scale chiral dynamo instability is determined by the spatial maximum value of μ_5 fluctuations. Therefore, the magnetic field amplification occurs during periods when μ_5 reaches temporal maxima during the CMW. If the small-scale chiral dynamo instability leads to a magnetic field strength that exceeds a critical value, which depends on the resistivity and the initial value of μ, magnetically-dominated turbulence is produced. Turbulence gives rise to a large-scale dynamo instability, which we find to be caused by the magnetic alpha effect. Our results have consequences for the dynamics of certain high-energy plasmas, such as the early Universe or proto-neutron stars.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要