Gate-tunable phase transition in a bosonic Su-Schrieffer-Heeger chain

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Metamaterials engineered to host topological states of matter in controllable quantum systems hold promise for the advancement of quantum simulations and quantum computing technologies. In this context, the Su-Schrieffer-Heeger (SSH) model has gained prominence due to its simplicity and practical applications. Here, we present the implementation of a gate-tunable, five-unit-cell bosonic SSH chain on a one-dimensional lattice of superconducting resonators. We achieve electrostatic control over the inductive intra-cell coupling using semiconductor nanowire junctions, which enables the spectroscopic observation of a transition from a trivial to a topological phase in the engineered metamaterial. In contrast to prior work, our approach offers precise and independent in-situ tuning of the coupling parameters. Finally, we discuss the robustness of the topological edge state against various disorder realizations. Our results supplement efforts towards gate-controlled superconducting electronics and large controllable bosonic lattices to enable quantum simulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要