Non-invasive in vivo study of morphology and mechanical properties of the median nerve

FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY(2024)

引用 0|浏览4
暂无评分
摘要
The current literature studied the median nerve (MN) at specific locations during joint motions. As only a few particular parts of the nerve are depicted, the relevant information available is limited. This experiment investigated the morphological and biomechanical properties of the MN. The effects of the shoulder and wrist motions on MN were explored as well. Eight young healthy female individuals were tested with two-dimensional ultrasound and shear wave elastography (SWE). The morphological and biomechanical properties were examined in limb position 1, with the wrist at the neutral position, the elbow extended at 180 degrees, and the shoulder abducted at 60 degrees. In addition, the experiment assessed the differences among the wrist, forearm, elbow, and upper arm with Friedman's test and Bonferroni post hoc analysis. Two groups of limb positions were designed to explore the effects of shoulder movements (shoulder abducted at 90 degrees and 120 degrees) and wrist movements (wrist extended at 45 degrees and flexed at 45 degrees) on the thickness and Young's modulus. Differences among the distributions of five limb positions were tested as well. The ICC3, 1 values for thickness and Young's modulus were 0.976 and 0.996, respectively. There were differences among the MN thicknesses of four arm locations in limb position 1, while Young's modulus was higher at the elbow and wrist than at the forearm and upper arm. Compared to limb position 1, only limb position 4 had an effect on MN thickness at the wrist. Both shoulder and wrist motions affected MN Young's modulus, and the stiffness variations at typical locations all showed a downward trend proximally in all. The distributions of MN thickness and Young's modulus showed fold line patterns but differed at the wrist and the pronator teres. The MN in the wrist is more susceptible to limb positions, and Young's modulus is sensitive to nerve changes and is more promising for the early diagnosis of neuropathy.
更多
查看译文
关键词
median nerve,morphology,biomechanics,shear wave elastography,ultrasound
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要