Plant-based delivery systems for controlled release of hydrophilic and hydrophobic active ingredients: Pea protein-alginate bigel beads

Food Hydrocolloids(2024)

引用 0|浏览0
暂无评分
摘要
Oral delivery systems for nutrients and nutraceuticals are required for personalized nutrition applications. In some applications, these delivery systems need to encapsulate both hydrophilic and hydrophobic bioactive agents. In this study, bigel beads (2 mm) were prepared using pea protein (PP) and sodium alginate (SA) to form the hydrogel phase, and glyceryl monostearate and soybean oil to form the oleogel phase. The hydrogel phase was crosslinked by using Ca2+ ions to form electrostatic bridges between the alginate molecules. The bigel beads had an oil-in-water type structure consisting of an oleogel dispersed phase within a hydrogel continuous phase. These beads were used to encapsulate and control the release of model hydrophobic (curcumin) and hydrophilic (epigallocatechin gallate) nutraceuticals. The textural and microstructural characteristics of the bigel beads were evaluated by dynamic shear rheology, textural profile analysis, cryo-electron microscopy, and fluorescence confocal microscopy. As the concentration of SA increasing from 0.2 to 1.0%, the hardness of bigel beads increased from 306.75 g to 792.40 g. In vitro digestion experiments showed that most of the nutraceuticals were released in the small intestine, rather than the stomach. Nutraceutical release could be controlled by manipulating bead composition, with the extent of nutraceutical release decreasing with increasing alginate concentration. The bigel beads developed in this study could be used as easy-to-swallow carriers for the controlled release of hydrophilic and hydrophobic bioactive ingredients. These kinds of products may be especially useful for people with dysphagia.
更多
查看译文
关键词
hydrogel,oleogel,bigel,gastrointestinal,EGCG,curcumin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要