谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Evidence of Short-Lived High-Energy Emissive State and Triplet Character of the Self-Trapped Exciton in Cs3Cu2I5 Perovskite

The Journal of Physical Chemistry Letters(2024)

引用 0|浏览5
暂无评分
摘要
Cs3Cu2I5 perovskite displays a Stokes-shifted photoluminescence (PL) at 445 nm, attributed to the self-trapped excitons (STEs). Unlike that observed in other perovskite materials, the free-exciton emission is not evidenced in this case. Herein, we reveal the existence of a short-lived high-energy emission centered around 375 nm through the reconstruction of time-resolved emission spectra (TRES), which is independent of the shape/size of Cs3Cu2I5 perovskite. This high-energy emission is proposed to originate from the free-exciton-derived distorted S1 state of the 0D Cs3Cu2I5 moiety. Moreover, STE PL (similar to 445 nm) was found to have phosphorescence characteristics. Theoretical calculation confirms a facile intersystem crossing at the Franck-Condon geometry, indicating the high lifetime of the STE and its triplet nature. The existence of a high-energy emissive state and the phosphorescent nature of the STE PL band provide valuable insights that could advance our understanding of the photophysics in these materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要