A mid-infrared Brillouin laser using ultra-high-Q on-chip resonators

arxiv(2024)

引用 0|浏览9
暂无评分
摘要
Ultra-high-Q optical resonators have facilitated recent advancements in on-chip photonics by effectively harnessing nonlinear phenomena providing useful functionalities. While these breakthroughs, primarily focused on the near-infrared region, have extended interest to longer wavelengths holding importance for monitoring and manipulating molecules, the absence of ultra-high-Q resonators in this region remains a significant challenge. Here, we have developed on-chip microresonators with a remarkable Q-factor of 38 million, surpassing previous mid-infrared records by over 30 times. Employing innovative fabrication techniques, including the spontaneous formation of light-guiding geometries during material deposition, resonators with internal multilayer structures have been seamlessly created and passivated with chalcogenide glasses within a single chamber. Major loss factors, especially airborne-chemical absorption, were thoroughly investigated and mitigated by extensive optimization of resonator geometries and fabrication procedures. This allowed us to access the fundamental loss performance offered by doubly purified chalcogenide glass sources, as demonstrated in their fiber form. Exploiting this ultra-high-Q resonator, we successfully demonstrated Brillouin lasing on a chip for the first time in the mid-infrared, with a threshold power of 91.9 μW and a theoretical Schawlow-Townes linewidth of 83.45 Hz, far surpassing carrier phase noise. Our results showcase the effective integration of cavity-enhanced optical nonlinearities into on-chip mid-infrared photonics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要