Alterations in gut microbiota contribute to cognitive deficits induced by chronic infection of Toxoplasma gondii

Brain, Behavior, and Immunity(2024)

Cited 0|Views12
No score
Abstract
Chronic infection with Toxoplasma gondii (T. gondii) emerges as a risk factor for neurodegenerative diseases in animals and humans. However, the underlying mechanisms are largely unknown. We aimed to investigate whether gut microbiota and its metabolites play a role in T. gondii-induced cognitive deficits. We found that T. gondii infection induced cognitive deficits in mice, which was characterized by synaptic ultrastructure impairment and neuroinflammation in the hippocampus. Moreover, the infection led to gut microbiota dysbiosis, barrier integrity impairment, and inflammation in the colon. Interestingly, broad-spectrum antibiotic ablation of gut microbiota attenuated the adverse effects of the parasitic infection on the cognitive function in mice; cognitive deficits and hippocampal pathological changes were transferred from the infected mice to control mice by fecal microbiota transplantation. In addition, the abundance of butyrate-producing bacteria and the production of serum butyrate were decreased in infected mice. Interestingly, dietary supplementation of butyrate ameliorated T. gondii-induced cognitive impairment in mice. Notably, compared to the healthy controls, the decreased butyrate production was negatively correlated with the levels of anti-T. gondii IgG antibody in the serum of human subjects. Overall, this study demonstrates that gut microbiota is a key regulator of T. gondii-induced cognitive impairment.
More
Translated text
Key words
Toxoplasma gondii,Gut microbiota,Cognitive decline,Butyrate,Neuroinflammation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined