A Surprisingly High Enhancing Potential of Nitric Acid in Sulfuric Acid–Methylamine Nucleation

Atmosphere(2024)

引用 0|浏览4
暂无评分
摘要
Nitric acid (NA) has recently been found to enhance sulfuric acid (SA)-driven new particle formation (NPF) at low temperatures (≤240 K). However, studies on the role of NA in atmospheric NPF remain limited. Herein, we explored the enhancement effect of NA on binary SA–methylamine (MA) nucleation by investigating the mechanism and kinetics of (NA)x(SA)y(MA)z (0 ≤ x, 0 ≤ y, x + y ≤ 3, 0 ≤ z ≤ 3) clusters using quantum chemical calculations and cluster dynamics simulations. We found that the mixed ternary NA-SA-MA clusters have lower evaporation rates compared to the corresponding NA-SA–dimethylamine (DMA) and NA-SA–ammonia (A) clusters, indicating the stronger binding ability of NA with respect to SA-MA clusters. At atmospheric conditions (T ≥ 278.15 K), NA can enhance the cluster formation rate of SA-MA by about six orders of magnitude, demonstrating a surprisingly high enhancing potential. Moreover, NA acts as an important participant in the cluster growth pathways of the NA-SA-MA system, as opposed to the “bridging” role of NA in the previously studied NA-SA-A system. This study proposes the first case of NA efficiently enhancing SA–amine nucleation at ambient temperature, suggesting a larger impact of NA in atmospheric NPF than previously expected.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要