Dental Pulp Stem Cell-Derived Exosomes Promote Sciatic Nerve Regeneration via Optimizing Schwann Cell Function.

Cellular reprogramming(2024)

引用 0|浏览0
暂无评分
摘要
Repair strategies for injured peripheral nerve have achieved great progresses in recent years. However, the clinical outcomes remain unsatisfactory. Recent studies have found that exosomes secreted by dental pulp stem cells (DPSC-exos) have great potential for applications in nerve repair. In this study, we evaluated the effects of human DPSC-exos on improving peripheral nerve regeneration. Initially, we established a coculture system between DPSCs and Schwann cells (SCs) in vitro to assess the effect of DPSC-exos on the activity of embryonic dorsal root ganglion neurons (DRGs) growth in SCs. We extracted and labeled human DPSC-exos, which were subsequently utilized in uptake experiments in DRGs and SCs. Subsequently, we established a rat sciatic nerve injury model to evaluate the therapeutic potential of DPSC-exos in repairing sciatic nerve damage. Our findings revealed that DPSC-exos significantly promoted neurite elongation by enhancing the proliferation, migration, and secretion of neurotrophic factors by SCs. In vivo, DPSC-exos administration significantly improved the walking behavior, axon regeneration, and myelination in rats with sciatic nerve injuries. Our study underscores the vast potential of DPSC-exos as a therapeutic tool for tissue-engineered nerve construction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要