ADAMTS13 deficiency exacerbates neuroinflammation by targeting matrix metalloproteinase-9 in ischemic brain injury.

Neuroreport(2024)

引用 0|浏览4
暂无评分
摘要
Our design aimed to explore the potential involvement of matrix metalloproteinase-9 (MMP-9) in the inflammatory response associated with acute ischemic stroke (AIS). We also aimed to preliminarily examine the potential impact of a disintegrin-like and metalloprotease with thrombospondin type I repeats-13 (ADAMTS13) on MMP-9 in AIS. We conducted oxygen-glucose deprivation models of microglia cells and mice models of AIS with middle cerebral artery occlusion (MCAO). We assessed the expression pattern of MMP-9 with western blotting (WB) and real-time quantitative PCR both in vivo and in vitro. MMP-9 downregulation was achieved by using ACE inhibitors such as trandolapril. For the MCAO model, we used ADAMTS13-deficient mice. We then evaluated the related neurological function scores, cerebral edema and infarct volume. The levels of inflammation-related proteins, such as COX2 and iNOS, were assessed using WB, and the expression of inflammatory cytokines was measured via enzyme-linked immuno sorbent assay in vivo. Our findings indicated that MMP-9 was up-regulated while ADAMTS13 was down-regulated in the MCAO model. Knockdown of MMP-9 reduced both inflammation and ischemic brain injury. ADAMTS13 prevented brain damage, improved neurological function and decreased the inflammation response in mice AIS models. Additionally, ADAMTS13 alleviated MMP-9-induced neuroinflammation in vivo. It showed that ADAMTS13 deficiency exacerbated ischemic brain injury through an MMP-9-dependent inflammatory mechanism. Therefore, the ADAMTS13-MMP-9 axis could have therapeutic potential for the treatment of AIS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要