Hybrid Tree Tensor Networks for quantum simulation

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
Hybrid Tensor Networks (hTN) offer a promising solution for encoding variational quantum states beyond the capabilities of efficient classical methods or noisy quantum computers alone. However, their practical usefulness and many operational aspects of hTN-based algorithms, like the optimization of hTNs, the generalization of standard contraction rules to an hybrid setting, and the design of application-oriented architectures have not been thoroughly investigated yet. In this work, we introduce a novel algorithm to perform ground state optimizations with hybrid Tree Tensor Networks (hTTNs), discussing its advantages and roadblocks, and identifying a set of promising applications. We benchmark our approach on two paradigmatic models, namely the Ising model at the critical point and the Toric code Hamiltonian. In both cases, we successfully demonstrate that hTTNs can improve upon classical equivalents with equal bond dimension in the classical part.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要