The neuroprotective effects of ferulic acid in toxin-induced models of Parkinson's disease: A review

Samira Hassani,Abolghasem Esmaeili

Ageing Research Reviews(2024)

引用 0|浏览0
暂无评分
摘要
Parkinson's disease is predominantly caused by dopaminergic neuron loss in the substantia nigra pars compacta and the accumulation of alpha-synuclein protein. Though the general consensus is that several factors, such as aging, environmental factors, mitochondrial dysfunction, accumulations of neurotoxic alpha-synuclein, malfunctions of the lysosomal and proteasomal protein degradation systems, oxidative stress, and neuroinflammation, are involved in the neurodegeneration process of Parkinson's disease, the precise mechanism by which all of these factors are triggered remains unknown. Typically, neurotoxic compounds such as rotenone, 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl 4-phenyl pyridinium (mpp+), paraquat, and maneb are used to Preclinical models of Parkinson's disease Ferulic acid is often referred to by its scientific name, 4-hydroxy-3-methoxycinnamic acid (C10H10O4), and is found naturally in cereals, fruits, vegetables, and bee products. This substance exhibits neuroprotective effects against Parkinson's disease because of its intriguing potential, which includes anti-inflammatory and antioxidant qualities. This review goes into additional detail about Parkinson's disease and the neuroprotective properties of ferulic acid that may help prevent the condition.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要