Ammonolysis-Driven Exsolution of Ru Nanoparticle Embedded in Conductive Metal Nitride Matrix to Boost Electrocatalyst Activity

ADVANCED SCIENCE(2024)

引用 0|浏览1
暂无评分
摘要
Exsolution is an effective method for synthesizing robust nanostructured metal-based functional materials. However, no studies have investigated the exsolution of metal nanoparticles into metal nitride substrates. In this study, a versatile nitridation-driven exsolution method is developed for embedding catalytically active metal nanoparticles in conductive metal nitride substrates via the ammonolysis of multimetallic oxides. Using this approach, Ti1-xRuxO2 nanowires are phase-transformed into holey TiN nanotubes embedded with exsolved Ru nanoparticles. These Ru-exsolved holey TiN nanotubes exhibit outstanding electrocatalytic activity for the hydrogen evolution reaction with excellent durability, which is significantly higher than that of Ru-deposited TiN nanotubes. The enhanced stability of the Ru-exsolved TiN nanotubes can be attributed to the Ru nanoparticles embedded in the robust metal nitride matrix and the formation of interfacial Ti3+NRu4+ bonds. Density functional theory calculations reveal that the exsolved Ru nanoparticles have a lower d-band center position and optimized hydrogen affinity than deposited Ru nanoparticles, indicating the superior electrocatalyst performance of the former. In situ Raman spectroscopic analysis reveals that the electron transfer from TiN to Ru nanoparticles is enhanced during the electrocatalytic process. The proposed approach opens a new avenue for stabilizing diverse metal nanostructures in many conductive matrices like metal phosphides and chalcogenides. Here, the development of a versatile nitridation-exsolution route to robust high-performance electrocatalyst via the ammonolysis-driven embedding of Ru metal nanoparticles in holey TiN nanotubes is reported. The exsolved RuTiN nanohybrid with strong interfacial interaction shows outstanding stable electrocatalytic activity for the hydrogen evolution reaction, which is attributable to the improvement of charge/mass transport and optimization of electronic structure. image
更多
查看译文
关键词
electrocatalyst,holey nanotube,metal nanoparticle,metal nitride matrix,nitridation-driven exsolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要