Design of biodegradable cellulose filtration material with high efficiency and breathability

Jukka A. Ketoja, Kaisa Saurio,Hille Rautkoski,Eija Kenttä,Atsushi Tanaka,Antti I. Koponen, Jussi Virkajärvi,Kimmo Heinonen, Katri Kostamo, Anastasia Järvenpää, Niina Hyry,Pirjo Heikkilä, Nelli Hankonen,Ali Harlin

Carbohydrate Polymers(2024)

Cited 0|Views2
No score
Abstract
Using respiratory protective equipment is one of the relevant preventive measures for infectious diseases, including COVID-19, and for various occupational respiratory hazards. Because experienced discomfort may result in a decrease in the utilization of respirators, it is important to enhance the material properties to resolve suboptimal usage. We combined several technologies to produce a filtration material that met requirements set by a cross-disciplinary interview study on the usability of protective equipment. Improved breathability, environmental sustainability, and comfort of the material were achieved by electrospinning poly(ethylene oxide) (PEO) nanofibers on a thin foam-formed fabric from regenerated cellulose fibers. The high filtration efficiency of sub-micron–sized diethylhexyl sebacate (DEHS) aerosol particles resulted from the small mean segment length of 0.35 μm of the nanofiber network. For a particle diameter of 0.6 μm, the filtration efficiency of a single PEO layer varied in the range of 80–97 % depending on the coat weight. The corresponding pressure drop had the level of 20–90 Pa for the airflow velocity of 5.3 cm/s. Using a multilayer structure, a very high filtration efficiency of 99.5 % was obtained with only a slightly higher pressure drop. This opens a route toward designing sustainable personal protective media with improved user experience.
More
Translated text
Key words
Filtration,Foam forming,Electrospinning,Regenerated cellulose,Poly(ethylene oxide),Usability
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined