谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Zircon U–Pb geochronologic, geochemical and Sr–Nd–Pb isotope characteristics of the Beidaban granites in the North Qilian Orogenic Belt: Petrogenesis and tectonic implications

Acta Geochimica(2024)

引用 0|浏览0
暂无评分
摘要
The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt (NQOB) are still under debate because of a lack of integrated constraints, especially the identification of the tectonic transition from arc to initial collision. Here we present results from zircon U–Pb geochronology, whole-rock geochemistry, and Sr–Nd–Pb isotope geochemistry of the Beidaban granites to provide crucial information for geodynamic evolution of NQOB. Zircon U–Pb dating yields an age of 468 ± 10 Ma for the Beidaban granites and most of the Beidaban samples contain amphibole, are potassium-rich, and have A/CNK values ranging from 0.7 to 0.9, illustrating that the Middle Ordovician Beidaban granites are K-rich, metaluminous, calc-alkaline granitoid. The geochemical characteristics indicate that the Beidaban granites are transitional I/S-type granitoids that formed in an arc setting. The isotopic compositions of initial (87Sr/86Sr)i values ranging from 0.70545 to 0.71082 (0.70842 on average) and εNd(t) values ranging from − 10.9 to − 6.7 (− 8.8 on average) with two-stage Nd model ages (TDM2) of 1.74–2.08 Ga suggest that the Beidaban granites originated from Paleoproterozoic crustal materials. In addition, the initial Pb isotopic compositions (206Pb/204Pb = 19.14–20.26; 207Pb/204Pb = 15.71–15.77; 208Pb/204Pb = 37.70–38.26) and geochemical features, such as high Th/Ta (17.43–30.12) and Rb/Nb (6.01–15.49) values, suggest that the Beidaban granite magma source involved recycled crustal components with igneous rocks. Based on these results in combination with previously published geochronological and geochemical data from other early Paleozoic igneous rocks, we suggest that the timing of the tectonic transition from arc to the initial collision to the final closure of the North Qilian Ocean can be constrained to the Middle-Late Ordovician (ca. 468–450 Ma).
更多
查看译文
关键词
Granitoids,Zircon U–Pb dating,Sr–Nd–Pb-isotopes,Petrogenesis,North Qilian Orogenic Belt
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要