Calculation of additional load and deformation of the receiving well enclosure structure caused by shield tunneling.

Li Xin,Li-Guang Chen, Tong Li, Yi-Lin Yu,Bo Wu

PloS one(2024)

引用 0|浏览11
暂无评分
摘要
The bulkhead additional thrust during shield tunneling, the force of friction between shield and soil, and the additional grouting pressure can cause additional stress in the surrounding soil, thereby disturbing existing buildings and structures. However, few studies focused on the disturbance situation when the shield tunneling machine approaches the receiving well. If the additional stress and deformation of the receiving well are too excessive, it could result in the collapse of the receiving well. Based on the two-stage method, this study derived the calculation formula of the additional stress and deformation of the receiving well enclosure structure caused by shield tunneling. Taking a shield machine receiving engineering as the context, this study established a numerical simulation model and compared theoretical calculation, the results of numerical simulation model and on-site monitoring data. Finally, the additional stress of the receiving well is analyzed. The research findings demonstrate that the theoretical prediction results, numerical simulation calculation results, and on-site monitoring data exhibit relatively small calculation errors, which validated the applicability of the theoretical prediction formula and numerical simulation model. As the distance between the shield machine and the receiving well decreases, the disturbance to the receiving well increases sharply. When the distance between the cutter head and the receiving well is less than three times the shield length, it is crucial to enhance the deformation monitoring of the receiving well. The primary factors affecting the additional load and deformation of the receiving well enclosure structure are the force of friction between shield and soil and the additional thrust of the cutterhead. The disturbance caused by the additional grouting pressure on the enclosure structure can be ignored.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要