Breaking the symmetry of a wavy channel alters the route to chaotic flow.

Physical review. E(2024)

引用 0|浏览1
暂无评分
摘要
We numerically explore the two-dimensional, incompressible, isothermal flow through a wavy channel, with a focus on how the channel geometry affects the routes to chaos at Reynolds numbers between 150 and 1000. We find that (i) the period-doubling route arises in a symmetric channel, (ii) the Ruelle-Takens-Newhouse route arises in an asymmetric channel, and (iii) the type-II intermittency route arises in both asymmetric and semiwavy channels. We also find that the flow through the semiwavy channel evolves from a quasiperiodic torus to an unstable invariant set (chaotic saddle), before eventually settling on a period-1 limit-cycle attractor. This study reveals that laminar channel flow at elevated Reynolds numbers can exhibit a variety of nonlinear dynamics. Specifically, it highlights how breaking the symmetry of a wavy channel can not only influence the critical Reynolds number at which chaos emerges, but also diversify the types of bifurcation encountered en route to chaos itself.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要