Eliminating the Burn-in Loss of Efficiency in Organic Solar Cells by Applying Dimer Acceptors as Supramolecular Stabilizers

Yanxun Li, Feng Qi,Baobing Fan, Kai-Kai Liu,Jifa Yu, Yuang Fu, Xianzhao Liu,Zhen Wang, Sen Zhang, Guanghao Lu,Xinhui Lu, Qunping Fan,Philip C. Y. Chow, Wei Ma,Francis R. Lin,Alex K. -Y. Jen

ADVANCED MATERIALS(2024)

引用 0|浏览0
暂无评分
摘要
The meta-stable active layer morphology of organic solar cells (OSCs) is identified as the main cause of the rapid burn-in loss of power conversion efficiency (PCE) during long-term device operation. However, effective strategies to eliminate the associated loss mechanisms from the initial stage of device operation are still lacking, especially for high-efficiency material systems. Herein, the introduction of molecularly engineered dimer acceptors with adjustable thermal transition properties into the active layer of OSCs to serve as supramolecular stabilizers for regulating the thermal transitions and optimizing the crystallization of the absorber composites is reported. By establishing intimate pi-pi interactions with small-molecule acceptors, these stabilizers can effectively reduce the trap-state density (Nt) in the devices to achieve excellent PCEs over 19%. More importantly, the low Nt associated with an initially optimized morphology can be maintained under external stresses to significantly reduce the PCE burn-in loss in devices. This research reveals a judicious approach to improving OPV stability by establishing a comprehensive correlation between material properties, active-layer morphology, and device performance, for developing burn-in-free OSCs. A reliable dimer supramolecular stabilizer strategy is developed to eliminate the burn-in loss of organic solar cells (OSCs). More mechanism studies reveal that the restricted molecular diffusion, robust morphology, and low-level trap state density are keys to address the burn-in loss, resulting in a long T98 lifetime over 600 h under the maximum-power-point tracking (MPPT) with a PCE over 19%. image
更多
查看译文
关键词
burn-in loss,dimer acceptor,organic photovoltaics,supramolecular stabilizer,thermal transition,trap state
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要