Type I interferon blockade with anifrolumab in patients with systemic lupus erythematosus modulates key immunopathological pathways in a gene expression and proteomic analysis of two phase 3 trials

ANNALS OF THE RHEUMATIC DISEASES(2024)

引用 0|浏览1
暂无评分
摘要
Introduction Anifrolumab is a type I interferon (IFN) receptor 1 (IFNAR1) blocking antibody approved for treating patients with systemic lupus erythematosus (SLE). Here, we investigated the immunomodulatory mechanisms of anifrolumab using longitudinal transcriptomic and proteomic analyses of the 52-week, randomised, phase 3 TULIP-1 and TULIP-2 trials. Methods Patients with moderate to severe SLE were enrolled in TULIP-1 and TULIP-2 and received intravenous anifrolumab or placebo alongside standard therapy. Whole-blood expression of 18 017 genes using genome-wide RNA sequencing (RNA-seq) (pooled TULIP; anifrolumab, n=244; placebo, n=258) and 184 plasma proteins using Olink and Simoa panels (TULIP-1; anifrolumab, n=124; placebo, n=132) were analysed. We compared treatment groups via gene set enrichment analysis using MetaBase pathway analysis, blood transcriptome modules, in silico deconvolution of RNA-seq and longitudinal linear mixed effect models for gene counts and protein levels. Results Compared with placebo, anifrolumab modulated >2000 genes by week 24, with overlapping results at week 52 and 41 proteins by week 52. IFNAR1 blockade with anifrolumab downregulated multiple type I and II IFN-induced gene modules/pathways and type III IFN-lambda protein levels, and impacted apoptosis-associated and neutrophil extracellular trap-associated transcriptional pathways, innate cell activating chemokines and receptors, proinflammatory cytokines and B-cell activating cytokines. In silico deconvolution of RNA-seq data indicated an increase from baseline of mucosal-associated invariant and gamma delta T cells and a decrease of monocytes following anifrolumab treatment. Discussion Type I IFN blockade with anifrolumab modulated multiple inflammatory pathways downstream of type I IFN signalling, including apoptotic, innate and adaptive mechanisms that play key roles in SLE immunopathogenesis.
更多
查看译文
关键词
Biological Therapy,Lupus Erythematosus, Systemic,Autoimmune Diseases
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要