Chrome Extension
WeChat Mini Program
Use on ChatGLM

Normal weak eigenstate thermalization

arxiv(2024)

Cited 0|Views4
No score
Abstract
Eigenstate thermalization has been shown to occur for few-body observables in a wide range of nonintegrable interacting models. For intensive observables that are sums of local operators, because of their polynomially vanishing Hilbert-Schmidt norm, weak eigenstate thermalization occurs in quadratic and integrable interacting systems. Here, we unveil a novel weak eigenstate thermalization phenomenon that occurs in quadratic models whose single-particle sector exhibits quantum chaos (quantum-chaotic quadratic models) and in integrable interacting models. In such models, we show that there are few-body observables with a nonvanishing Hilbert-Schmidt norm that are guarrantied to exhibit a polynomially vanishing variance of the diagonal matrix elements, a phenomenon we dub normal weak eigenstate thermalization. For quantum-chaotic quadratic Hamiltonians, we prove that normal weak eigenstate thermalization is a consequence of single-particle eigenstate thermalization, i.e., it can be viewed as a manifestation of quantum chaos at the single-particle level. We report numerical evidence of normal weak eigenstate thermalization for quantum-chaotic quadratic models such as the 3D Anderson model in the delocalized regime and the power-law random banded matrix model, as well as for the integrable interacting spin-1/2 XYZ and XXZ models.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined