High Quality Fe1+yTe Synthesized by Chemical Vapor Deposition with Conspicuous Vortex Flow

ADVANCED FUNCTIONAL MATERIALS(2024)

引用 0|浏览14
暂无评分
摘要
2D materials provide an ideal platform to explore novel superconducting behavior including Ising superconductivity, topological superconductivity and Majorana bound states in different 2D stoichiometric Ta-, Nb-, and Fe-based crystals. However, tuning the element content in 2D compounds for regulating their superconductivity has not been realized. In this work, the synthesis of high quality Fe1+yTe with tunable Fe content by chemical vapor deposition (CVD) is reported. The quality and composition of Fe1+yTe are characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM). The superconducting behavior of Fe1+yTe crystals with varying Fe contents is observed. The superconducting transition of selected Fe1.13 +/- 0.06Te sample is sharp (Delta T-c = 1 K), while Fe1.43 +/- 0.07Te with a high-Fe content shows a relative broad superconducting transition (Delta T-c = 2.6 K) at zero magnetic field. Significantly, the conspicuous vortex flow and a transition from a 3D vortex liquid state to a 2D vortex liquid state is observed in Fe1.43 +/- 0.07Te sample. This work highlights the tunability of the superconducting properties of Fe1+yTe and sheds light on the vortex dynamics in Fe-based superconductors, which facilitates them to understand the intrinsic mechanisms of high-temperature superconductivity.
更多
查看译文
关键词
2D materials,CVD,Fe1+yTe crystals,superconductivity,vortex flow
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要