Mechanistic insight into the C1 product selectivity for the catalytic hydrogenation of CO2 over metal-doped graphene

Carbon Neutrality(2024)

Cited 0|Views15
No score
Abstract
The conversion of CO2 into fuels and valuable chemicals presents a viable path toward carbon neutrality. The aim of this study is to investigate the potential of metal-doped graphene catalysts in the reduction of CO2 to C1 products. 20 typical M-graphene (M = metal) catalysts were established based on DFT calculations. Six candidate catalysts, i.e., V-, Cr-, Mn-, Ni-, Mo-, and Ta-graphene catalysts, were selected by combining the hydrogen dissociation ability and the energy band gap of the catalysts. Subsequently, the adsorption characteristics and hydrogenation reactions of CO2 over the six candidates were explored. CO2 tends to adsorb at the M site through vertical adsorption and carbon–oxygen co-adsorption. V- and Cr-graphene catalysts promote the production of intermediate COOH, whereas Mn-, Ni-, Mo-, and Ta-doped surfaces are more favorable for HCOO formation. Concerning the hydrogenation to CO and HCOOH, V-, Cr-, Ni- and Mo-graphene catalysts preferentially yield CO from COOH, whereas Ta-doped graphene favors the formation of HCOOH. In total, the competitive hydrogenation of CO2 reveals the selectivity of the C1 products. Cr- and Ni-graphene favor the production of HCOOH and CH3OH, whereas V-, Mn-, Mo-, and Ta-graphene primarily yield CH3OH.
More
Translated text
Key words
Metal-doped graphene CO2,C1 products,Catalytic hydrogenation,Density functional theory
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined