A modular organic neuromorphic spiking circuit for retina-inspired sensory coding and neurotransmitter-mediated neural pathways

NATURE COMMUNICATIONS(2024)

Cited 0|Views6
No score
Abstract
Signal communication mechanisms within the human body rely on the transmission and modulation of action potentials. Replicating the interdependent functions of receptors, neurons and synapses with organic artificial neurons and biohybrid synapses is an essential first step towards merging neuromorphic circuits and biological systems, crucial for computing at the biological interface. However, most organic neuromorphic systems are based on simple circuits which exhibit limited adaptability to both external and internal biological cues, and are restricted to emulate only specific the functions of an individual neuron/synapse. Here, we present a modular neuromorphic system which combines organic spiking neurons and biohybrid synapses to replicate a neural pathway. The spiking neuron mimics the sensory coding function of afferent neurons from light stimuli, while the neuromodulatory activity of interneurons is emulated by neurotransmitters-mediated biohybrid synapses. Combining these functions, we create a modular connection between multiple neurons to establish a pre-processing retinal pathway primitive. The distinctive interdependence in mixed ionic-electronic conductors emulates retinal pathway. Here, the authors develop a modular organic neuromorphic spiking circuit to replicate the interdependent functions of receptors, neurons and synapses that are chemically modulated by neurotransmitters.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined