The Source, Mobility and Fate of Bismuth (Bi) in Legacy Mine Waste, Yxsj?berg, Sweden

MINERALS(2024)

引用 0|浏览0
暂无评分
摘要
The usage of bismuth (Bi), a critical and strategic raw material, has increased in the last 10 years. At present, the knowledge of Bi geochemistry is too limited to develop accurate mine waste and water management strategies to prevent environmental impact. Therefore, its geochemistry was studied in historical tailings in Yxsjoberg, Sweden. Intact tailings cores and shore samples were geochemically and mineralogically analyzed. Groundwater was sampled between 2016 and 2021 and analyzed for 71 elements and (SO4, F, Cl). The results were correlated with metals and dissolved organic matter (DOC), which have been previously published. The total concentrations, sequential extraction and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) mapping indicated that Bi had been mobilized from the primary mineral bismuthinite (Bi2S3). In the oxidized tailings from both the cores and shore, Bi was hypothesized to have adsorbed to iron (Fe) (hydr)oxides, which prohibited high concentrations of Bi leaching into the groundwater and surface water. Dissolved Bi in groundwater was significantly correlated with DOC. In surface water, dissolved Bi was transported more than 5 km from the tailings. This study indicates that Bi can become mobile from legacy mine waste due to the oxidation of bismuthinite and either be scavenged by adsorption of Fe (hydr)oxides or kept mobile in groundwater and surface water due to complexation with DOC.
更多
查看译文
关键词
bismuth (Bi) mobility,DOC complexation,Fe (hydr)oxides,bismuthinite,historical tailings
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要