Employing photocurable biopolymers to engineer photosynthetic 3D-printed living materials for production of chemicals

GREEN CHEMISTRY(2024)

引用 0|浏览1
暂无评分
摘要
Photosynthetic microorganisms, such as cyanobacteria and microalgae, have great potential as living cell factories for chemical and fuel production. Immobilisation of cells is an effective technique for enhancing productivity and longevity of the production system, as well as aiding in the separation of cells from the medium. Alginate crosslinked with divalent ions is commonly used for immobilisation, however its ionic crosslinking is reversible in high ionic strength or in the presence of chelating agents leading to matrix degradation. To address these challenges, photocurable materials present a potential solution, especially when coupled with 3D-printing technologies to create complex, tunable 3D architectures for various applications. In this context, we propose a bioink composed of alginate, photocurable galactoglucomannan-methacrylate and photosynthetic cells for 3D-printing green biocatalysts for solar-chemical production. We demonstrate the applicability of this photocurable bioink for the immobilisation of photosynthetic microbes either capable of producing ethylene (specifically-engineered Synechocystis cell factories) or transforming cyclohexanone to epsilon-caprolactone (specifically-engineered Chlamydomonas cell factories), both of which are industrially relevant chemicals. Films produced from photocurable bioinks demonstrate high mechanical stress tolerance compared to films prepared via conventional ionic crosslinking, showing resistance to high ionic strength in the medium. Furthermore, both Synechocystis and Chlamydomonas cells entrapped within 200 mu m-thick hydrogel layers, 3D-printed on glass support surfaces, demonstrated notably high (ethylene) or similar (biotransformation of cyclohexanone to epsilon-caprolactone) production titres and space-time yields compared to the conventional biocatalysts. These engineered living materials, being biocompatible and biobased, particularly when used in conjunction with 3D-printing, provide convenient scalability and potential to enhance sustainability in the chemical industry. Photosynthetic microbes entrapped within a novel photocurable bioink demonstrate enhanced chemical productivity and longevity in 3D-printed films. This approach holds promise for the sustainable and scalable production of solar chemicals and fuels.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要