Optimizing the random search of a finite-lived target by a Lvy flight

PHYSICAL REVIEW E(2024)

引用 0|浏览3
暂无评分
摘要
In many random search processes of interest in chemistry, biology, or during rescue operations, an entity must find a specific target site before the latter becomes inactive, no longer available for reaction or lost. We present exact results on a minimal model system, a one-dimensional searcher performing a discrete time random walk, or Levy flight. In contrast with the case of a permanent target, the capture probability and the conditional mean first passage time can be optimized. The optimal Levy index takes a nontrivial value, even in the long lifetime limit, and exhibits an abrupt transition as the initial distance to the target is varied. Depending on the target lifetime, this transition is discontinuous or continuous, separated by a nonconventional tricritical point. These results pave the way to the optimization of search processes under time constraints.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要