Manipulating the Rate and Overpotential for Electrochemical Water Oxidation: Mechanistic Insights for Cobalt Catalysts Bearing Noninnocent Bis(benzimidazole)pyrazolide Ligands

Yu-Ting Wu, Sharad V. Kumbhar, Ruei-Feng Tsai, Yung-Ching Yang, Wan-Qin Zeng, Yu-Han Wang,Wan-Chi Hsu,Yun-Wei Chiang,Tzuhsiung Yang,I-Chung Lu,Yu-Heng Wang

ACS ORGANIC & INORGANIC AU(2024)

引用 0|浏览1
暂无评分
摘要
Electrochemical water oxidation is known as the anodic reaction of water splitting. Efficient design and earth-abundant electrocatalysts are crucial to this process. Herein, we report a family of catalysts (1-3) bearing bis(benzimidazole)pyrazolide ligands (H(2)L1-H(2)L3). H(2)L3 contains electron-donating substituents and noninnocent components, resulting in catalyst 3 exhibiting unique performance. Kinetic studies show first-order kinetic dependence on [3] and [H2O] under neutral and alkaline conditions. In contrast to previously reported catalyst 1, catalyst 3 exhibits an insignificant kinetic isotope effect of 1.25 and zero-order dependence on [NaOH]. Based on various spectroscopic methods and computational findings, the L3Co(2)(III)(mu-OH) species is proposed to be the catalyst resting state and the nucleophilic attack of water on this species is identified as the turnover-limiting step of the catalytic reaction. Computational studies provided insights into how the interplay between the electronic effect and ligand noninnocence results in catalyst 3 acting via a different reaction mechanism. The variation in the turnover-limiting step and catalytic potentials of species 1-3 leads to their catalytic rates being independent of the overpotential, as evidenced by Eyring analysis. Overall, we demonstrate how ligand design may be utilized to retain good water oxidation activity at low overpotentials.
更多
查看译文
关键词
water oxidation,molecular electrocatalyst,homogeneous catalysis,noninnocent ligand,rate-overpotentialcorrelation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要