Advancing breast cancer diagnosis with a near-infrared fluorescence imaging smart sensor for estrogen/progesterone receptor detection

SCIENTIFIC REPORTS(2023)

Cited 0|Views3
No score
Abstract
Molecular-genetic imaging has greatly advanced clinical diagnosis and prognosis monitoring. However, the specific visualization of intracellular proteins such as estrogen receptor (ER) and progesterone receptor (PR) remains an elusive goal. Here, we highlight a novel method for selectively detecting ER/PR positive tumors using genetically engineered responsive elements. Our study demonstrates that the double responsive elements of ER/PR exhibit the most sensitivity to the steroid receptors in breast cancers. By utilizing a cationic polymer vector, we constructed a responsive element-fluorescence protein system that can selectively image ER/PR positive breast cancers in murine models under a near-infrared laser. This non-invasive imaging achieved high-resolution detection without death or serious anaphylactic activity in the animals. Our findings suggest that the reporter system consisting of steroid receptor response elements and near-infrared proteins provides a practical system for identifying biomarkers and advancing cancer diagnosis and therapy.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined