Transforming Growth Factor- Induces Interleukin-6 Secretion from Human Ligamentum Flavum-Derived Cells through Partial Activation of p38 and p44/42 Mitogen-Activated Protein Kinases

ASIAN SPINE JOURNAL(2023)

引用 0|浏览8
暂无评分
摘要
Study Design: This experimental study was performed using human ligamentum flavum-derived cells (HFCs). Purpose: To investigate the intracellular signaling mechanism of interleukin-6 (IL-6) secretion in transforming growth factor-beta (TGF beta)-stimulated HFCs. Overview of Literature: Lumbar spinal stenosis (LSS) is a prevalent disease among the elderly, characterized by debilitating pain in the lower extremities. Although the number of patients with LSS has increased in recent years, the underlying pathomechanism remains unclear. Clinical examinations typically rely on magnetic resonance imaging to diagnose patients, revealing ligamentum flavum hypertrophy. Some studies have suggested an association between ligamentum flavum hypertrophy and inflammation/fibrosis, and expression of TGF-beta and IL-6 has been observed in surgically obtained ligamentum flavum samples. However, direct evidence linking TGF-beta and IL-6 expression in HFCs is lacking. Methods: HFCs were obtained from patients with LSS who had undergone decompression surgery. The cells were stimulated with TGF-beta and pretreated with either the p38 mitogen-activated protein (MAP) kinase inhibitor SB203580 or the p44/42 MAP kinase inhibitor FR180204. IL-6 secretion in the cell culture medium and IL-6 messenger RNA (mRNA) expression levels were analyzed using an enzyme-linked immunoassay and real-time polymerase chain reaction, respectively. Results: TGF-beta administration resulted in a dose- and time-dependent stimulation of IL-6 release. Treatment with SB203580 and FR180204 markedly suppressed TGF-beta-induced IL-6 secretion from HFCs. Moreover, these inhibitors suppressed IL-6 mRNA expression in response to TGF-beta stimulation. Conclusions: Our findings indicate that TGF-beta induces IL-6 protein secretion and gene expression in HFCs through the activation of p38 or p44/42 MAP kinases. These results suggest a potential association between IL-6-mediated inflammatory response and tissue hypertrophy in LSS, and we provide insights into molecular targets for therapeutic interventions targeting LSS-related inflammation through our analysis of the MAP kinase pathway using HFCs
更多
查看译文
关键词
MAP kinase,Interleukin-6,Transforming growth factor-beta,Spinal stenosis,Ligamentum flavum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要