The Dynamic Assimilation Technique measures photosynthetic CO2 response curves with similar fidelity to steady-state approaches in half the time

Mauricio Tejera-Nieves, Do Young Seong, Lucas Reist,Berkley J. Walker

JOURNAL OF EXPERIMENTAL BOTANY(2024)

引用 0|浏览0
暂无评分
摘要
The net CO2 assimilation (A) response to intercellular CO(2 )concentration (Ci) is a fundamental measurement in photosynthesis and plant physiology research. The conventional A/Ci protocols rely on steady-state measurements and take 15-40 min per measurement, limiting data resolution or biological replication. Additionally, there are several CO2 protocols employed across the literature, without clear consensus as to the optimal protocol or systematic biases in their estimations. We compared the non-steady-state Dynamic Assimilation Technique (DAT) protocol and the three most used CO2 protocols in steady-state measurements, and tested whether different CO2 protocols lead to systematic differences in estimations of the biochemical limitations to photosynthesis. The DAT protocol reduced the measurement time by almost half without compromising estimation accuracy or precision. The monotonic protocol was the fastest steady-state method. Estimations of biochemical limitations to photosynthesis were very consistent across all CO2 protocols, with slight differences in Rubisco carboxylation limitation. The A/Ci curves were not affected by the direction of the change of CO2 concentration but rather the time spent under triose phosphate utilization (TPU)-limited conditions. Our results suggest that the maximum rate of Rubisco carboxylation (Vcmax), linear electron flow for NADPH supply (J), and TPU measured using different protocols within the literature are comparable, or at least not systematically different based on the measurement protocol used.
更多
查看译文
关键词
A/Ci response,gas exchange methods,photosynthesis,Rubisco carboxylation limitation,RuBP regeneration limitation,triose phosphate limitation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要