Assessing the impact of meropenem exposure on ceftolozane/tazobactam-resistance development in Pseudomonas aeruginosa using in vitro serial passage

Journal of Antimicrobial Chemotherapy(2024)

引用 0|浏览1
暂无评分
摘要
Abstract Background Patients infected with difficult-to-treat Pseudomonas aeruginosa are likely to receive meropenem (MEM) empirically before escalation to ceftolozane/tazobactam (C/T). We assessed whether pre-exposure to MEM affected C/T resistance development on C/T exposure. Materials and methods Nine clinical P. aeruginosa isolates were exposed to MEM 16 mg/L for 72 h. Then, isolates were serially passaged in the presence of C/T (concentration of 10 mg/L) for 72 h as two groups: an MEM-exposed group inoculated with MEM pre-exposed isolates and a non-MEM control group. At 24 h intervals, samples were plated on drug-free and drug-containing agar (C/T concentration 16/8 mg/L) and incubated to quantify bacterial densities (log10 cfu/mL). Growth on C/T agar indicated resistance development, and resistant population was calculated by dividing the cfu/mL on C/T plates by the cfu/mL on drug-free agar. Results At 72 h, resistant populations were detected in 6/9 isolates. In five isolates, MEM exposure significantly increased the prevalence of ceftolozane/tazobactam-resistance development; the percentages of resistance population were 100%, 100%, 53.5%, 31% and 3% for the MEM-exposed versus 0%, 0%, 2%, 0.35% and ≤0.0003% in the unexposed groups. One isolate had a similar resistant population at 72 h between the two groups. The remaining isolates showed no development of resistance, regardless of previous MEM exposure. Conclusions MEM exposure may pre-dispose to C/T resistance development and thus limit the therapeutic utility of this β-lactam/β-lactamase inhibitor. Resistance may be a result of stress exposure or molecular-level mutations conferring cross-resistance. Further in vivo studies are needed to assess clinical implications of these findings.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要