Highly Polarization-Deep-Ultraviolet-Sensitive β-Ga2O3 Epitaxial Films by Disrupting Rotational Symmetry and Encrypted Solar-Blind Optical Communication Application.

The journal of physical chemistry letters(2024)

引用 0|浏览2
暂无评分
摘要
Ultrawide bandgap semiconductor β-Ga2O3 (4.9 eV), with its monoclinic crystal structure, exhibits distinct anisotropic characteristics both optically and electrically, making it an ideal material for solar-blind polarization photodetectors. In this work, β-Ga2O3 epitaxial films were deposited on sapphire substrates with different orientations, and the mechanisms underlying the anisotropy of these epitaxial films were investigated. Compared to c-plane sapphire, the lattice mismatch between m- or r-plane sapphire and β-Ga2O3 is more pronounced, disrupting the rotational symmetry of the films and rendering them anisotropic. Thanks to the improved anisotropy, the polarization ratio of the photodetector based on β-Ga2O3 films grown on r-plane substrates is 0.24, nearly ten times higher than that on c-plane substrates. Finally, by utilizing these polarization-sensitive photodetectors, we developed an encrypted solar-blind ultraviolet optical communication system. Our work provides a new approach to facilitate the fabrication and application of high-performance polarization-sensitive solar-blind photodetectors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要