Harnessing Interlayer Magnetic Coupling for Efficient, Field-Free Current-Induced Magnetization Switching in a Magnetic Insulator

Small Structures(2024)

引用 0|浏览5
暂无评分
摘要
Owing to the unique features of low Gilbert damping, long spin-diffusion lengths and zero Ohmic losses, magnetic insulators are promising candidate materials for next-generation spintronic applications. However, due to the localized magnetic moments and the complex metal-oxide interface between magnetic insulators and heavy metals, spin-functional Dzyaloshinskii-Moriya interactions or spin Hall and Edelstein effects are weak, which diminishes the performance of these typical building blocks for spintronic devices. Here, we exploit the exchange coupling between metallic and insulating magnets for efficient electrical manipulation of heavy metal/magnetic insulator heterostructures. By inserting a thin Co layer, we enhance the spin-orbit torque efficiency by more than 20 times, which significantly reduces the switching current density. Moreover, we demonstrate field-free current-induced magnetization switching caused by a symmetry-breaking non-collinear magnetic texture. Our work launches magnetic insulators as an alternative platform for low-power spintronic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要