Educational simulator for mastoidectomy considering mechanical properties using 3D printing and its usability evaluation

SCIENTIFIC REPORTS(2024)

引用 0|浏览2
暂无评分
摘要
Complex temporal bone anatomy complicates operations; thus, surgeons must engage in practice to mitigate risks, improving patient safety and outcomes. However, existing training methods often involve prohibitive costs and ethical problems. Therefore, we developed an educational mastoidectomy simulator, considering mechanical properties using 3D printing. The mastoidectomy simulator was modeled on computed tomography images of a patient undergoing a mastoidectomy. Infill was modeled for each anatomical part to provide a realistic drilling sensation. Bone and other anatomies appear in assorted colors to enhance the simulator's educational utility. The mechanical properties of the simulator were evaluated by measuring the screw insertion torque for infill specimens and cadaveric temporal bones and investigating its usability with a five-point Likert-scale questionnaire completed by five otolaryngologists. The maximum insertion torque values of the sigmoid sinus, tegmen, and semicircular canal were 1.08 +/- 0.62, 0.44 +/- 0.42, and 1.54 +/- 0.43 N mm, displaying similar-strength infill specimens of 40%, 30%, and 50%. Otolaryngologists evaluated the quality and usability at 4.25 +/- 0.81 and 4.53 +/- 0.62. The mastoidectomy simulator could provide realistic bone drilling feedback for educational mastoidectomy training while reinforcing skills and comprehension of anatomical structures.
更多
查看译文
关键词
Three-dimensional (3D) printing,Computed tomography (CT),Educational simulator,Insertion torque,Mastoidectomy,Mechanical properties,Shape accuracy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要