Super Non-singular Decompositions of Polynomials and their Application to Robustly Learning Low-degree PTFs

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
We study the efficient learnability of low-degree polynomial threshold functions (PTFs) in the presence of a constant fraction of adversarial corruptions. Our main algorithmic result is a polynomial-time PAC learning algorithm for this concept class in the strong contamination model under the Gaussian distribution with error guarantee O_d, c(opt^1-c), for any desired constant c>0, where opt is the fraction of corruptions. In the strong contamination model, an omniscient adversary can arbitrarily corrupt an opt-fraction of the data points and their labels. This model generalizes the malicious noise model and the adversarial label noise model. Prior to our work, known polynomial-time algorithms in this corruption model (or even in the weaker adversarial label noise model) achieved error Õ_d(opt^1/(d+1)), which deteriorates significantly as a function of the degree d. Our algorithm employs an iterative approach inspired by localization techniques previously used in the context of learning linear threshold functions. Specifically, we use a robust perceptron algorithm to compute a good partial classifier and then iterate on the unclassified points. In order to achieve this, we need to take a set defined by a number of polynomial inequalities and partition it into several well-behaved subsets. To this end, we develop new polynomial decomposition techniques that may be of independent interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要