Simulating emission line galaxies for the next generation of large-scale structure surveys

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
We investigate emission line galaxies across cosmic time by combining the modified L-Galaxies semi-analytical galaxy formation model with the JiuTian cosmological simulation. We improve the tidal disruption model of satellite galaxies in L-Galaxies to address the time dependence problem. We utilise the public code CLOUDY to compute emission line ratios for a grid of HII region models. The emission line models assume the same initial mass function as that used to generate the spectral energy distribution of semi-analytical galaxies, ensuring a coherent treatment for modelling the full galaxy spectrum. By incorporating these emission line ratios with galaxy properties, we reproduce observed luminosity functions for Hα, Hβ, [OII], and [OIII] in the local Universe and at high redshifts. We also find good agreement between model predictions and observations for auto-correlation and cross-correlation functions of [OII]-selected galaxies, as well as their luminosity dependence. The bias of emission line galaxies depends on both luminosity and redshift. At lower redshifts, it remains constant with increasing luminosity up to around ∼ 10^42.5 erg s^-1 and then rises steeply for higher luminosities. The transition luminosity increases with redshift and becomes insignificant above z=1.5. Generally, galaxy bias shows an increasing trend with redshift. However, for luminous galaxies, the bias is higher at low redshifts, as the strong luminosity dependence observed at low redshifts diminishes at higher redshifts. We provide a fitting formula for the bias of emission line galaxies as a function of luminosity and redshift, which can be utilised for large-scale structure studies with future galaxy surveys.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要