Unveiling the potential of a functionalized pyrrole-based polymer for efficient cadmium ion removal from wastewater: synthesis, characterization, and performance evaluation

Environmental Sciences Europe(2024)

Cited 0|Views3
No score
Abstract
Cadmium ion Cd2+ contamination is a major environmental issue caused by industry. Polyarylidene N-hexane pyrrole (PAPh) and crosslinked polyarylidene N-phenyl pyrrole (PAPD) were prepared from the previously synthesized polymer (polyarylidene ketone (PAK)) by using the advantage of repeating carbonyl groups at the 1,4 position and reacting it with hexylamine and P-phenylenediamine via the Paal–Knorr reaction. Various methods were used to characterize polymers, such as FT-IR spectroscopy, X-ray diffraction (XRD), thermogravimetry analysis (TGA), UV–visible spectroscopy, scanning electron microscope (SEM), zeta potential, and surface area measurements (BET), revealing successful fabrication, good thermostability, and well-defined microporous structures useful for Cd2+ adsorption. Optimal adsorption capacities of 55.8 mg g−1 for PAPh and 86.95 mg g−1 for PAPD indicate a significant enhancement in Cd2+ adsorption via their microporous structures, Cd2+ adsorption was also investigated in terms of contact time, initial concentration, and pH. A total input concentration of 30 ppm Cd ions, may yield an 84.3
More
Translated text
Key words
Cadmium,Polypyrrole,Adsorption mechanism,Kinetic,Isotherm
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined