Enhancing the electrical conductivity of concrete using metal-organic frameworks

Construction and Building Materials(2024)

Cited 0|Views2
No score
Abstract
This research evaluates the electrical conductivity, mechanical characteristics, durability, and environmental viability of electrically conductive concrete (ECC) incorporating zeolitic imidazolate framework (ZIF-67) metal-organic-framework (MOF). Performance of MOF-ECC was characterized by slump, electrical conductivity/resistivity, compressive strength, water absorption, volume of permeable pore voids, and economic and environmental viability. Its performance was compared to plain concrete and counterparts made with different conductive materials, namely steel fibers, carbon fibers, graphite powder, and carbon black. Results showed that increasing the volumetric rate of conductive materials reduced the slump and required more superplasticizer to maintain consistency. Meanwhile, the addition of MOF led to equivalent or more electrically concrete compared to other materials. Compressive strength and water absorption were affected by the type and proportion of conductive material but were positively impacted by MOF incorporation. A performance index, involving electrical resistivity, mechanical characteristics, durability, and environmental viability, highlighted that ECC containing 0.5% MOF by volume was most suitable for multifunctional concrete applications.
More
Translated text
Key words
Electrically conductive concrete,Metal-organic framework,Fibers,Powders,Performance
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined